PDF合併工具

PDF 合併 / PDF Merger

在瀏覽器內合併,不會把 PDF 上傳到伺服器。檔案很大/很多頁時會比較吃記憶體。
未選擇任何檔案
拖曳調整順序(上 → 下 = 先 → 後):

    PDF合併工具說明

    免費 PDF 合併工具(免上傳、拖曳排序、快速下載)Browser-based
    這是一個線上 PDF 合併工具,可直接在瀏覽器內將多個 PDF 合併成一個檔案:不需安裝、免註冊、免費,並支援拖曳排序與自訂輸出檔名。
    主要特色
    免上傳、隱私友善:所有處理在你的瀏覽器本機完成,不會把 PDF 上傳到伺服器。
    拖曳排序:可直接拖拉清單調整順序(上 → 下 = 先 → 後)。
    自訂檔名:輸出檔名可自由命名(預設 merged.pdf)。
    適用情境:合併報告、論文附件、合約、掃描文件、教學講義等。
    使用方式(30 秒完成)
    1
    在上方工具選取多個 PDF 檔案。
    2
    拖曳清單,調整合併順序。
    3
    (可選)輸入輸出檔名。
    4
    按「合併下載」,取得合併後 PDF。

    Free PDF Merger (No Upload, Drag to Reorder, Instant Download)
    A free online PDF merge tool that runs in your browser: no installation, no sign-up, drag-and-drop ordering, and a custom output filename.
    Key features
    No upload: processed locally in your browser (privacy-friendly).
    Drag to reorder: top → bottom = first → last.
    Custom filename: default merged.pdf.

    2020年12月31日 星期四

    EC-Lab EIS 擬合結果error 值 和 deviation 偏差值之判讀

     

    經EC-Lab EIS成功擬合結果可得下表

    藍色框框為deviation (dev)

    紅色框框為 error ratio ( X2/ I Z I )



    一般來說,dev偏差值要<1,但超過5個elements的fitting, 後面elements 的dev都可以容許比較大一點,以這範例來說R2與R3 略大於1是OK的。









    2020年11月14日 星期六

    固態電池相關知識影片

    5.1 贺艳兵:固态电池电解质和界面研究
    5.2 固态电池研究及产业化
    5.3  加拿大西安大略大學孫學良-全固態電池:電池界面設計、新型固態電解質和電極
    5.4  查爾姆斯理工大學熊仕昭-固態電池與鋰負極界面設計
    5.5  中科院化學所郭玉國-金屬鋰固態電池研究進展

    2020年10月18日 星期日

    新穎電池相關知識影片

    4.1 方国赵:锌离子电解液与电极界面研究
    4.2 Operando XAFS在電池研究中的應用
    4.3 華南師範大學邢麗丹-離子溶劑化層結構對電解液及電極/電解液界面性質的影響機理

    2020年8月24日 星期一

    電池相關教學影片彙整

     1.基礎知識篇: 

    山東科技大學劉瑞《鋰離子電池》前沿課程(目前有7部,持續更新中)

    2.電池材料分析篇

    2-1廈門大學李劍鋒-電化學拉曼光譜分析
    2-2 復旦大學蔡文斌-電化學紅外光譜方法和應用
    2-3 山東科技大學劉瑞-用於電池材料研究的X射線粉末衍射基礎
    2-4  XRD在電化學中的應用
    2-5  XPS實驗技術及在電池領域的應用
    2-6 掃描電鏡工作原理及製樣方法
     https://www.bilibili.com/video/BV1Ta4y147er   

    2020年7月12日 星期日

    Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries

     The rechargeable aluminum-ion battery (AIB) is a promising candidate for next-generation high-performance batteries, but its cathode materials require more development to improve their capacity and cycling life. We have demonstrated the growth of MoSe2 three-dimensional helical nanorod arrays on a polyimide substrate by the deposition of Mo helical nanorod arrays followed by a low-temperature plasma-assisted selenization process to form novel cathodes for AIBs. The binder-free 3D MoSe2-based AIB shows a high specific capacity of 753 mAh g–1 at a current density of 0.3 A g–1 and can maintain a high specific capacity of 138 mAh g–1 at a current density of 5 A g–1 with 10 000 cycles. Ex situ Raman, XPS, and TEM characterization results of the electrodes under different states confirm the reversible alloying conversion and intercalation hybrid mechanism during the discharge and charge cycles. All possible chemical reactions were proposed by the electrochemical curves and characterization. Further exploratory works on interdigital flexible AIBs and stretchable AIBs were demonstrated, exhibiting a steady output capacity under different bending and stretching states. This method provides a controllable strategy for selenide nanostructure-based AIBs for use in future applications of energy-storage devices in flexible and wearable electronics.

    https://doi.org/10.1021/acsnano.0c02831




    2020年6月30日 星期二

    Transparent Flexible Heteroepitaxy of NiO Coated AZO Nanorods Arrays on Muscovites for Enhanced Energy Storage Application

    Transparent flexible energy storage devices are considered as important chains in the next‐generation, which are able to store and supply energy for electronic devices. Here, aluminum‐doped zinc oxide (AZO) nanorods (NRs) and nickel oxide (NiO)‐coated AZO NRs on muscovites are fabricated by a radio frequency (RF) magnetron sputtering deposition method. Interestingly, AZO NRs and AZO/NiO NRs are excellent electrodes for energy storage application with high optical transparency, high conductivity, large surface area, stability under compressive and tensile strain down to a bending radius of 5 mm with 1000 bending cycles. The obtained symmetric solid‐state supercapacitors based on these electrodes exhibit good performance with a large areal specific capacitance of 3.4 mF cm−2, long cycle life 1000 times, robust mechanical properties, and high chemical stability. Furthermore, an AZO/NiO//Zn battery based on these electrodes is demonstrated, yielding a discharge capacity of 195 mAh g−1 at a current rate of 8 A g−1 and a discharge capacity of over 1000 cycles with coulombic efficiency to 92%. These results deliver a concept of opening a new opportunity for future applications in transparent flexible energy storage.

    https://doi.org/10.1002/smll.202000020

    2020年5月4日 星期一

    High-Performance Rechargeable Aluminum–Selenium Battery with a New Deep Eutectic Solvent Electrolyte: Thiourea-AlCl3

    Aluminum–sulfur batteries (ASBs) have attracted substantial interest due to their high theoretical specific energy density, low cost, and environmental friendliness, while the traditional sulfur cathode and ionic liquid have very fast capacity decay, limiting cycling performance because of the sluggishly electrochemical reaction and side reactions with the electrolyte. Herein, we demonstrate, for the first time, excellent rechargeable aluminum–selenium batteries (ASeBs) using a new deep eutectic solvent, thiourea-AlCl3, as an electrolyte and Se nanowires grown directly on a flexible carbon cloth substrate (Se NWs@CC) by a low-temperature selenization process as a cathode. Selenium (Se) is a chemical analogue of sulfur with higher electronic conductivity and lower ionization potential that can improve the battery kinetics on the sluggishly electrochemical reaction and the reduction of the polarization where the thiourea-AlCl3 electrolyte can stabilize the side reaction during the reversible conversion reaction of Al–Se alloying processes during the charge–discharge process, yielding a high specific capacity of 260 mAh g–1 at 50 mA g–1 and a long cycling life of 100 times with a high Coulombic efficiency of nearly 93% at 100 mA g–1. The working mechanism based on the reversible conversion reaction of the Al–Se alloying processes, confirmed by the ex situ Raman, XRD, and XPS measurements, was proposed. This work provides new insights into the development of rechargeable aluminum–chalcogenide (S, Se, and Te) batteries

    2020年4月16日 星期四

    Randles–Sevcik equation 計算離子擴散係數

    在循環伏安法中,Randles–Sevcik方程描述了掃描速率對峰值電流ip的影響。對於簡單的氧化還原反應,ip不僅取決於電活性物質的濃度和擴散特性,還取決於掃描速率。[1]
     i p = 0.4463 n FAC(nFvD / RT)1/2
    或者,如果溶液溫度為25°C:[2]
      ip = 268600 n 3/2 AD 1/2 Cv 1/2
    ip =曲線鋒上最大電流(安培)
    n =氧化還原中轉移的電子數
    A =電極面積,單位為cm2
    F = C mol-1中的法拉第常數
    D =擴散係數,單位為cm2 / s
    C =濃度(摩爾/立方厘米)
    ν=掃描速率,單位V / s  (計算時切記不要使用mV)
    R = VC K-1 mol-1中的氣體常數
    T =以K為單位的溫度

    ip以更快的電壓掃描速率增加。重要的是要記住,電流i是每單位時間的電荷(或通過的電子)。因此,在更快的電壓掃描速率下,每單位時間傳遞的電荷會更大,因此ip會增加,而電荷的總量是相同的。
    用途
    使用由該方程式定義的關係,可以確定電化學活性物質的擴散係數對於已知(或可以估計)擴散係數的物種,ip相對於ν1/ 2的圖的斜率可用於計算其他參數 如電極面積

    2020年3月7日 星期六

    如何將word中的Endnote Citations與 Bibliography複製進另一個word檔?

     

    首先要先複製該段內文(複製的操作需建立在word有安裝endnote情況下)

    然後再貼上至另一個word檔(貼上需保留功能變數)

    點選Update Citations and Bibliography


    如此內文中的Citations 和 尾端的Bibliography (Reference) 會自動更新。

    2020年2月7日 星期五

    新材料電池理論容量/理論能量密度計算

    以鎂碘電池為例


    The Gibbs formation energy of MgI2 at standard conditions (298 K, 1 atm) can be calculated (data from NIST webbook)



    Complete I2 reduction is accompanied by 2 e transfer per . Therefore, the theoretical capacity of I2 is


    The electromotive force (e.m.f.) of the Mg/I2 battery is


    The theoretical energy density of I2 cathode is


    The theoretical energy density of the Mg/I2 battery based on the total electrode mass is


    參考資料:https://www.nature.com/articles/ncomms14083#Sec15